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Abstract

In this work, the Discrete Conduction Model (DCM method) was developed. This proposed method is an inter-

mediate approach between the porous medium and PDE methods, as it assumes each sphere to be an isothermal el-

ement, and constructs the energy conservation equation in terms of thermal resistances between these contacting

spheres. As a result, the governing equations were reduced to a set of simultaneous ODE’s in time. To demonstrate this

method, a packing algorithm was utilized to generate 3-D random packed beds, and the results showed the DCM

method to have an error of less than 0.9% while attaining a speedup of 105 in comparison with the PDE method. In

addition, results for varying packing structures showed the porosity to be insufficient to uniquely characterize a packing

structure, but instead presents correlations in terms of CN and c.
� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer in a porous medium is an area rich in

practical applications, and has for decades attracted

numerous researchers. By and large, most of these pio-

neering studies were driven by large-scale applications

such as geothermal heating, but more recently there has

been a growing interest in porous systems with smaller

length-scale requirements. Applications include rapid-

rate sintering [1], catalytic packed-bed [2], solid fuel-cell

[3], insulation coating [4], and Microsystems [5].

For rapid-rate sintering, experiments have found it to

be 1000 times faster than normal sintering, and the

amount of time required to reach the theoretical density

can be reduced from days (normal sintering) to minutes

or even seconds [1]. Thus, this is an application rich in

commercial and research value. However, this phe-

nomenon was found to be related to thermal diffusion

driven by the local temperature gradients, and unfor-

tunately, researchers found modeling of this type of

sintering to be ‘‘extremely difficult’’ because ‘‘the tem-
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perature–time profile is known only approximately’’ [6].

Catalytic packed-bed is another example of an applica-

tion requiring improved heat transfer models to capture

smaller length scales. In general, a catalytic packed-bed

is a porous structure whereby chemical reactions occur

as the working fluid flows through. Since heat is gener-

ally generated, catalytic packed-beds are designed to

minimize thermally induced instabilities [2]. However,

researchers found the existing heat transfer tools to ei-

ther ‘‘appreciably over-predicts the hot spot’’ or require

empirically determined parameters for each and every

system for which predictions are sought [7].

Thus, while there is an abundance of porous-medium

heat transfer studies, most of the earlier ones [c.f. 8]

tended to assume the porous medium to be a continu-

ous, macroscopic system with effective thermal proper-

ties (hereafter referred to as the effective-medium or

porous medium approximation), and as such are more

suitable for large-scale systems such as geothermal.

Consequently, there have been fewer studies that are

applicable for emerging areas with smaller length-scale

requirements. There is, of course, always the option of

directly solving the partial differential equation for each

particle in the packing and then coupling them through

the boundary conditions, but this would consume an

excessive amount of computational resource, as it would
ed.

mail to: shklee@ust.hk


Nomenclature

A area, m2

CN Mean Coordination Number

Cp specific heat capacity, W s/K

k thermal conductivity, W/mK

M total number of spheres in system

N number of neighbor spheres in contact (local

coordination number)

Q total heat transfer, W

R thermal constriction resistance, K/W

T temperature, K

V volume, m3

X ,Y ,Z dimensions of sphere packing

Greek symbols

a thermal diffusivity, m2/s

b angle between two contacts, rad

dT correction of the sphere temperature, K

c ratio of contact radius to sphere radius, rc=rs
s time, s

skj time parameter, s

Subscripts

b bulk

c contact

l local

s sphere, or length scale with rs
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render solutions at a length scale far smaller than re-

quired.

Besides the effective-medium approximation, there

are a large variety of alternative approaches. In general,

these approaches have in common the characteristic of

not directly dealing with each particle in the packing

structure, and as such would inherently have difficulties

to later accommodate system-level convective and/or

radiative exchanges. Two such studies are presented here

for illustrative purposes, although it should be clear that

there is an abundance of other studies sharing similar

limitations. In 1997, Sahimi and Tsotsis [9] presented

one of the earlier alternative models for the studies of

pure conduction in a porous medium. Instead of

adapting the classical effective-medium approximation,

Sahimi presented an analytical model that could account

for large-scale spatial variations in a random porous

medium through the usages of various Green’s func-

tions. While this model certainly was a step forward in

terms of its ability to account for spatial non-uniformi-

ties, it nonetheless relied on the availability of distribu-

tion functions that require a significant effort to

determine, even if it existed for a non-Voronoi-type

packing structure. In addition, it is not clear how or

whether this formulation could be extended to 3-D

configurations, and how it could be extended to include

convective and radiative exchange. Another alternative

approach was proposed by Cheng et al. [10], in which

the packing structure was again modeled as a Voronoi

polyhedron, and the effective conductivity was com-

puted for a 3-D packing structure through circuit-type

analyses. Again, this method could only be applied for

regular packings, and is of limited value for random

packings, transient calculations, or convective/radiative

exchange.
In principle, it is possible to model each particle in

the packing as isothermal spheres and to formulate the

subsequent energy equation in terms of the resistance

network. Thus, this method, herein referred to as the

Discrete Conduction Model (DCM), has the potential of

being a viable solution for applications requiring greater

spatial resolution than that provided by the classical

porous medium approach. While this DCM method is

readily extendable to account for convective and radia-

tive exchange, the major obstacle is that in assuming

each sphere to be isothermal, it creates an artifact that

limits its applicability to transient calculations. Thus, for

the DCM method to be applicable for transient calcu-

lations, a correction term needs to be included. In 1999,

Siu and Lee [11] called this the capacitance effect, but

were only able to correlate it for the very restrictive

configuration of spheres in linear (180-degree) contacts,

as it was intimately tied to the packing configuration.

Thus, in order to utilize the DCM method for transient,

3-D calculation, more work was required to determine

the capacitance effect from each spheres couple in a

complex, 3-D packing structure.

This is the motivation for the present study. The

objectives are to develop the DCMmethod for transient,

3-D calculations, and to utilize the model to investigate

the effects of packing structures on the effective thermal

conductivity. Specifically, the interest is to determine

whether porosity is sufficient to uniquely describe the

thermal characteristic of a packed bed, and furthermore

to elucidate on the interplay between the microstructure

of the packing (coordination number and contact ra-

dius), the overall porosity and their effect on the effective

conductivity. This is of particular relevance as many

existing studies have validated results utilizing porosity

as the characteristic parameter. In this regard, besides
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elucidating on the above-mentioned interplay, this study

seeks to reconcile any such interplay with the vast body

of results already established. To accomplish these ob-

jectives, the constitutive relation was re-developed in

order to capture the capacitance artifact between

spheres in complex arrangements. The resulting tran-

sient energy equation was then executed for 3-D regular

and random packings.
2. Analysis

The DCM method can be summarized below in Eq.

(1), where as discussed in the earlier study [11], the

Correction Term in the constitutive relation given by

Eq. (1c) accounts for the capacitance effect necessary to

offset the artificial diffusion induced by the assumption

of isothermal spheres. In order to extend Eq. (1) to

three-dimensional random packed beds, two issues
β

Tj Ti 
 

T1 T2 T3

Tl 

(a)

(b)

(c)

Fig. 1. Schematic of contacting sphere system with (a) 180

degree orientation (b) a varying contact angle, b and (c) mul-

tiple neighboring spheres.
needed to be addressed. First, as Eq. (1) was derived for

a contact angle, b, of 180-degrees (Fig. 1a), the effect of
different contact angles (Fig. 1b), needed to be verified.

Second, as the number of contacts on each sphere in-

creases (Fig. 1c), so too the amount of thermal energy

diffusing in or out of each sphere, and, thus, the Cor-

rection Term needed to be revised in order to account

for the number of contacting spheres.

Ti ¼
1

V

Z
T dV ð1aÞ

qCpV
dTj
ds

¼
XN
i¼1

Qij; j ¼ 1;M ð1bÞ

Qij ¼
Ti � Tj
Rij

þ ðCorrection Term of the diffusionÞ

ð1cÞ
To account for the two above-mentioned issues, an al-

ternative form of Eq. (1c) was used, whereby the effect of

the previous Correction Term was now achieved

through corrections in the driving potential, Ti � Tj.
That is, the effects of the instantaneous diffusion, the

contact angles and the number of contacting spheres

were all addressed by correcting this driving potential.

This is given below by Eq. (2), where the correlation

given in Eq. (2b) was obtained from an earlier study [12].

Thus, the key to the Correction Term came down to

determining the appropriate expression for the temper-

ature correction, dT .

Qij ¼
T 0
i � T 0

j

Rij
¼ ðTi � dTiÞ � ðTj � dTjÞ

Rij
ð2aÞ

Rij ¼
0:57588

krsc
1

�
� 1:0920x10�3

c
þ 3:0187x10�5

c2

� 1:202x10�7

c3

�
ð2bÞ
2.1. Governing equation

To develop the expression for dT , the bulk temper-

ature of sphere-j (Fig. 1c) can be conceptually thought

of as consisting two components. One component is T 0
j ,

the average temperature of a small region in sphere-j
that is in the immediate vicinity of the surface in contact

with sphere-i; this is the temperature responsible for the

heat flow across the contact. The second component,

dTj, is the temperature rise due to the thermal energy

coming from other contacting spheres. Thus, the sum of

these two components (T 0
j and dTj) gives the average

temperature, Tj. Allowing Qlj to represent the heat

transfer from sphere-l to sphere-j, and assuming that it

takes a duration of sli for this heat to propagate from

sphere-l through sphere-j and arriving at sphere-i,
then dTj can be thought of as the additional ‘‘energy’’
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Fig. 2. Schematic of a 2-D packing utilized for illustrating the

solution procedure.

890 W.W.M. Siu, S.H.-K. Lee / International Journal of Heat and Mass Transfer 47 (2004) 887–898
diffusing to sphere-i from sphere-j’s neighboring

spheres. Thus, assuming that including sphere-i, sphere-j
has ‘‘N ’’ additional neighboring spheres, then the ex-

pression for dTj can be expressed by Eq. (3a). This dTj is,
thus, the component that needs to be subtracted from Tj
in order to properly compute the energy exchange be-

tween sphere-j and sphere-i. Obviously the exact ex-

pression for dTj depends on the choice of Ti, and it is

thus a vector with N components if sphere-j has a total

of N contacting spheres. This dTj embodies a time con-

stant, sli, which as given below in Eq. (3b) was found in

an earlier study [13] to be proportional to half of the

distance between sphere-l and sphere-i.

dTj ¼
1

qCpV

XN
l¼1
l6¼i

Z s

s�sli

Qlj ds

� �
ð3aÞ

sli ¼
½rs sinðbli=2Þ�

2

a
ð3bÞ

After invoking the trapezoidal rule, Eq. (3a) can be re-

written as Eq. (4a) below, and after invoking Taylor’s

expansion, truncating higher order terms, the expression

for dTj can be equivalently expressed by Eq. (4b).

dTj ¼
1

qCpV

XN
l¼1
l6¼i

1

2
½Qljjs þ Qljjs�sli

�sli ð4aÞ

dTj ¼
1

qCpV

XN
l¼1
l6¼i

Qlj

�
� 1

2

dQlj

ds
sli þ

1

4

d2Qlj

ds2
s2li

�
sli ð4bÞ

Similarly, the same analyses can be performed for

sphere-i, and thus, substituting these into Eq. (2a), the

final governing equations take on the forms given below

by Eq. (5).

Qij ¼
Ti � Tj
Rij

� 1

RijqCpV

XN
k¼1
k 6¼j

Qki

�8<
: � 1

2

dQki

ds
skj

þ 1

4

d2Qki

ds2
s2kj

�
skj �

XN
l¼1
l6¼i

Qlj

�
� 1

2

dQlj

ds
sli

þ 1

4

d2Qlj

ds2
s2li

�
sli

9=
; ð5aÞ

qCpV
dTj
ds

¼
XN
i¼1

Qij; j ¼ 1;M ð5bÞ

sli ¼
½rs sinðbli=2Þ�

2

a
ð5cÞ

Rij ¼
0:57588

krsc
1

�
� 1:0920� 10�3

c

þ 3:0187� 10�5

c2
� 1:202� 10�7

c3

�
ð5dÞ
Note that since Eq. (5) was derived with a truncated

Taylor’s series, it is only valid for a time-scale, ds,
greater than the time constant, s. For example, the time-

scale, ds, must be greater than 0.1 s for 1 mm glass beads

and 1 · 10�3 s for 1 mm copper spheres.

2.2. Method of solution

Before solving Eq. (5), a packing structure first needs

to be generated. This packing structure should contain

information on the size and location of each sphere in

the packed bed, as well as the contact radii formed be-

tween the contacting spheres within the packed bed.

From this, basic information such as the contact-radius-

to-sphere-radius ratio, c, the contact angles between

neighboring spheres, b, the time constants, s, and the

relevant constriction resistances, R, can all be deter-

mined. In the present study, we had utilized the packing

algorithm developed in an earlier study [14] in order to

obtain a three-dimensional-random packed-bed. Unless

otherwise specified, 2 mm diameter stainless steel (AISI

304) spheres were used. The thermal conductivity, den-

sity, and specific heat capacity were 13.4, 468, and 8238,

respectively, and contacts between the spheres were

assumed to be perfect.

To illustrate the application of Eq. (5), a 4· 4 2-D

regular packing structure (Fig. 2) is utilized, although

the results presented in this manuscript were obtained

for random, 3-D packings. The first step in solving Eq.

(5) is to setup Eq. (5a) for each of the 16 spheres in this

example structure, in which these spheres are sorted as

corner, boundary and internal spheres. Each of the four

Corner spheres has two neighbors, and for sphere-1 in

Fig. 2, they are sphere-2 and sphere-5. Looking strictly

at the interaction between sphere-2 and sphere-1, the

resulting heatflow is Q21, and for this interaction, cor-

rections are needed due to heat flowing into sphere-2

and sphere-1. Specifically, sphere-2 receives heat directly
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from sphere-3 and sphere-6 while sphere-1 receives heat

directly from sphere-5. Taking these into account, Eq.

(5a) for Q21 is given below in Eq. (5a1).

Q21 ¼
T2 � T1
R21

� 1

R21qCpV
Q32

��
� 1

2

dQ32

ds
s31 þ

1

4

d2Q32

ds2
s231

�
s31

þ Q62

�
� 1

2

dQ62

ds
s61 þ

1

4

d2Q62

ds2
s261

�
s61

� Q51

�
� 1

2

dQ51

ds
s52 þ

1

4

d2Q51

ds2
s252

�
s52

�
ð5a1Þ

A similar expression can similarly by focusing on, Q51,

the interaction between sphere-5 and sphere-1, and this

is given below by Eq. (5a2).

Q51 ¼
T5 � T1
R51

� 1

R51qCpV
Q65

��
� 1

2

dQ65

ds
s61 þ

1

4

d2Q65

ds2
s261

�
s61

þ Q95

�
� 1

2

dQ95

ds
s91 þ

1

4

d2Q95

ds2
s291

�
s91

� Q21

�
� 1

2

dQ21

ds
s25 þ

1

4

d2Q21

ds2
s225

�
s25

�
ð5a2Þ

Thus, two equations are generated for each corner

sphere, with each corresponding to an interaction pair,

and the relevant expressions for the time constants, s,
and resistance, R are obtained through Eqs. (5c) and

(5d). Besides corner spheres, the packing in Fig. 2 also

contains eight boundary spheres, with each being in

contact with three neighboring spheres. As a result, there

is three interacting pairs for each boundary sphere, and

from the discussions above, there is a governing equa-

tion for each of the interacting pairs. That is, for each

boundary sphere in this 2-D example, there are three

equations. Consider for example, sphere-5 in Fig. 2,

which is in contact with sphere-1, sphere-6 and sphere-9,

and consequently giving rise to Q15, Q65, and Q95. For

Q15, the energy for sphere-1 needs to account for the

energy coming from sphere-2, while for sphere-5, cor-

rections are needed due to energy coming from sphere-6

and sphere-9. Similar considerations are given for each

of the other two interacting pairs, and the resulting

equation is given below in Eq. (5a3)

Q15 ¼
T1 � T5
R15

� 1

R15qCpV
Q21

��
� 1

2

dQ21

ds
s25 þ

1

4

d2Q21

ds2
s225

�
s25

� Q65

�
� 1

2

dQ65

ds
s61 þ

1

4

d2Q65

ds2
s261

�
s61

� Q95

�
� 1

2

dQ95

ds
s91 þ

1

4

d2Q95

ds2
s291

�
s91

�

Q65 ¼
T6 � T5
R65

� 1

R65qCpV
Q26

��
� 1

2

dQ26

ds
s25 þ

1

4

d2Q26

ds2
s225

�
s25

þ Q76

�
� 1

2

dQ76

ds
s75 þ

1

4

d2Q76

ds2
s275

�
s75

þ Q10�6

�
� 1

2

dQ10�6

ds
s10�5 þ

1

4

d2Q10�6

ds2
s210�5

�
s10�5

� Q15

�
� 1

2

dQ15

ds
s16 þ

1

4

d2Q15

ds2
s216

�
s16

� Q95

�
� 1

2

dQ95

ds
s96 þ

1

4

d2Q95

ds2
s296

�
s96

�

Q95 ¼
T9 � T5
R95

� 1

R95qCpV

� Q10�9

��
� 1

2

dQ10�9

ds
s10�5 þ

1

4

d2Q10�9

ds2
s210�5

�
s10�5

þ Q13�9

�
� 1

2

dQ13�9

ds
s13�5 þ

1

4

d2Q13�9

ds2
s213�5

�
s13�5

� Q15

�
� 1

2

dQ15

ds
s19 þ

1

4

d2Q15

ds2
s219

�
s19

� Q65

�
� 1

2

dQ65

ds
s69 þ

1

4

d2Q65

ds2
s269

�
s69

�
ð5a3Þ

Having completed the derivation for the corner and

boundary spheres, it requires only a simple extension of

the same principle to obtain the governing equations for

the interior spheres. For sphere-6 in Fig. 2, it is in

contact with four neighboring spheres, and, thus, a total

of four equations are generated with each corresponding

to each of the four interactions: Q26, Q56, Q76, and Q10�6.

These equations are given below in Eq. (5a4).

Q26 ¼
T2 � T6
R26

� 1

R26qCpV
Q12

��
� 1

2

dQ12

ds
s16 þ

1

4

d2Q12

ds2
s216

�
s16

þ Q32

�
� 1

2

dQ32

ds
s36 þ

1

4

d2Q32

ds2
s236

�
s36

� Q56

�
� 1

2

dQ56

ds
s52 þ

1

4

d2Q56

ds2
s252

�
s52

� Q76

�
� 1

2

dQ76

ds
s72 þ

1

4

d2Q76

ds2
s272

�
s72

� Q10�6

�
� 1

2

dQ10�6

ds
s10�2 þ

1

4

d2Q10�6

ds2
s210�2

�
s10�2

�
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Q56 ¼
T5 � T6
R56

� 1

R56qCpV
Q15

��
� 1

2

dQ15

ds
s16 þ

1

4

d2Q15

ds2
s216

�
s16

þ Q95

�
� 1

2

dQ95

ds
s96 þ

1

4

d2Q95

ds2
s296

�
s96

� Q26

�
� 1

2

dQ26

ds
s25 þ

1

4

d2Q26

ds2
s225

�
s25

� Q76

�
� 1

2

dQ76

ds
s75 þ

1

4

d2Q76

ds2
s275

�
s75

� Q10�6

�
� 1

2

dQ10�6

ds
s10�5 þ

1

4

d2Q10�6

ds2
s210�5

�
s10�5

�

Q76 ¼
T7 � T6
R76

� 1

R76qCpV

� Q37

��
� 1

2

dQ37

ds
s36 þ

1

4

d2Q37

ds2
s236

�
s36

þ Q87

�
� 1

2

dQ87

ds
s86 þ

1

4

d2Q87

ds2
s286

�
s86

þ Q11�7

�
� 1

2

dQ11�7

ds
s11�6 þ

1

4

d2Q11�7

ds2
s211�6

�
s11�6

� Q26

�
� 1

2

dQ26

ds
s27 þ

1

4

d2Q26

ds2
s227

�
s27

� Q56

�
� 1

2

dQ56

ds
s57 þ

1

4

d2Q56

ds2
s257

�
s57

� Q10�6

�
� 1

2

dQ10�6

ds
s10�7 þ

1

4

d2Q10�6

ds2
s210�7

�
s10�7

�

Q10�6¼
T10�T6
R10�6

� 1

R10�6qCpV

� Q9�10

��
�1

2

dQ9�10

ds
s96þ

1

4

d2Q9�10

ds2
s296

�
s96

þ Q11�10

�
�1

2

dQ11�10

ds
s11�6þ

1

4

d2Q11�10

ds2
s211�6

�
s11�6

þ Q14�10

�
�1

2

dQ14�10

ds
s14�6þ

1

4

d2Q14�10

ds2
s214�6

�
s14�6

� Q26

�
�1

2

dQ26

ds
s2�10þ

1

4

d2Q26

ds2
s22�10

�
s2�10

� Q56

�
�1

2

dQ56

ds
s5�10þ

1

4

d2Q56

ds2
s25�10

�
s5�10

� Q76

�
�1

2

dQ76

ds
s7�10þ

1

4

d2Q76

ds2
s27�10

�
s7�10

�

ð5a4Þ

Assuming an initial temperature distribution, Eq. (5a)

became an ODE in terms of Qij’s for all i’s and j’s, and
for a packing of M spheres where each sphere has N
contacting neighbors, this would yield a total of M � N
ODE’s for Qij’s. To solve Eq. (5a), the temperature from
a previous time-step (or from initial condition) was

utilized, and the derivatives were approximated using a

backward-differencing scheme (fully implicit). Each of

the resulting M � N algebraic equation was then suc-

cessively solved once. The Qij’s were then placed into Eq.

(5b), where the derivative term was also approximated

using a backward-differencing scheme. The updated

temperature distribution was then placed back into Eq.

(5a) and the process iterated at the same time-step until

the temperature reached the convergence criterion of

10�13. Once iterative convergence was achieved within

one time-step, the calculation proceeded to the next

time-step and the entire process was repeated until

steady-state was reached according to the infinity norm

condition.
3. Results and discussion

After the typical verifications (user prescribed pa-

rameters and physical consistency), the numerical model

was validated and results were obtained to assess the

performance of the present model and the effects of

various packing structures. The validation was struc-

tured to compare solutions at two different levels. The

first-level validation consisted of comparing the sphere-

temperature for a simple packing structure, while the

second-level consisted of comparing the effective thermal

conductivity for complex three-dimensional random

packing structures. For the first-level validation, the

results obtained from the presently proposed method

were benchmarked against results obtained by solving

the full partial differential equation (PDE method). For

the second-level validation, the effective conductivity

was computed from the temperature distribution ob-

tained from the presently proposed method, and this

was in-turn bench-marked against experimental results

from the literature.

3.1. Validation

Shown in Fig. 3a is a system consisting of three

contacting spheres, with sphere-1 initially at 10 �C while

sphere-2 and sphere-3 were at 2.5 �C. At time s ¼ 0, the

three spheres were brought into contact with a contact

angle, c, of 140�, and as shown in Fig. 2b, nearly exact

agreement was obtained between the solution obtained

from the presently proposed DCM method and the

volumetrically averaged solution obtained from the

PDE method (each sphere was gridded with 20 · 30· 30
grids).

For systems containing more than three spheres, the

PDE method required an excessive amount of compu-

tational time, and as a result, comparisons for such

systems were made against existing experimental data on

thermal conductivities. Shown in Fig. 4, is a schematic
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of typical three-dimensional random packings utilized in

this study. Altogether, a packing of porosity 0.44 (500

spheres of 2 mm diameter) and a second packing of

porosity 0.6 (503 sphere of 2 mm diameter) were studied.

A heat-input boundary condition was imposed on one

side and a heat-withdrawal boundary condition was

imposed on the opposite side. Using the DCM method,

the transient temperature of each sphere was computed

until steady-state, and from this, the average planar

temperatures and effective conductivity were calculated.
Shown in Fig. 5, the results obtained from the DCM

method was within 3% of measurements made by Koh

et al. [15] and Agapiou and DeVires [16]. Besides direct

comparisons, validation was also inferred for situations

in which directly comparable solutions were not avail-

able. Shown in Fig. 6a is a schematic of a 3-D, regular

packed bed consisting of five layers of spheres, where

each layer consisted of nine spheres in contact. A uni-

directional heat-flux was imposed and the resulting

transient temperature was compared against results ob-

tained from five spheres in linear contact (Fig. 6b). As

expected, due to the symmetry in the problem, Fig. 6c

and d show that the results obtained from the 45-sphere

system agree with those obtained from the simplified 5-

sphere system. That is, in the sense that the transient

calculations in 2-D contacts were validated through Fig.

3, the validation for transient calculations in 3-D pac-

kings can be inferred from Fig. 6c. Finally, to confirm

the necessity of the correction terms in Eq. (1c), com-

parisons were made with transient calculations on a 3-D

packing structure subjected to 3-D heat-flux (Fig. 7a).

The results in Fig. 7b showed the neglect of the correc-

tion term to introduce an error of roughly 10%, which

can be considerable for applications such as rapid rate

sintering.

3.2. Accuracy and computational efficiency

The simple and random packings used in the vali-

dation were employed to assess the accuracy and

speedup of the DCM relative to the PDE and porous

medium method. For the three-sphere case considered in

Fig. 3, the DCM method was shown in Fig. 8 to be

accurate to better than 0.9% when compared against

solutions from the PDE method. As expected, the

maximum error occurred at the boundary where the

thermal gradient was largest. However, this minor error

came at the benefit of a significant speed-up. As shown

in Table 1, the DCM method required 0.5 CPU-second

on a DEC-alpha 21164-500au workstation, while the



Fig. 6. Schematic of (a) a five-layer simple-cubic packing structure, (b) five spheres in linear contacts, (c) the transient temperature

distribution from these two packing structures and (d) the planar temperature distributions.
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PDE method required 15 CPU-hours even while using

the more efficient Multi-Spatial-Temporal-Grid method

[17]. This corresponded to a speedup of 105.

For a larger random packing of 503 spheres (porosity

of 0.6), a similar comparison was made between the

DCM and the porous medium method. Shown in Fig. 9a

are the results obtained from these two methods, where

due to the volumetric averaging the results from the

porous medium method was shown in Fig. 9b to be off

by as much as 80% on a local temperature basis. To

demonstrate that this error stemmed from the volu-

metric averaging of the porous medium method, this

comparison was repeated in Fig. 10a where the DCM

solutions were averaged on a plane. In this case, the

error from the porous medium method was shown in

Fig. 10b to reduce from 80% to 10%. However, as

summarized in Table 2, the low accuracy of the porous

medium method comes with a speedup of 480 in com-

parison with the DCM method. Thus, for calculations
not requiring spatial resolutions, the porous medium

method can be an attractive choice.

3.3. Effect of packing structure

To illustrate the isotropy of a 3-D random packed

bed, calculations were performed on a packed bed of 504

spheres with a mean coordination number, CN, and

contact radius ratio, c, of 3.7 and 3%, respectively.

Shown in Fig. 11a, b and c are the temperature distri-

butions resulting from unidirectional heat-flux condi-

tions in the x, y and z directions, respectively. From the

temperature distributions, the effective conductivities in

the three directions were calculated and found in Fig. 12

to have a high degree of isotropy. This confirms the

random nature of the packing structure.

One of the stated objectives of this study is to de-

termine the parameters necessary to uniquely charac-

terize the packed bed. To accomplish this, a large



Fig. 7. Schematic showing (a) the heat-flux condition on a 3-D

packing system and (b) the error induced in neglecting the

correction term.
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Table 1

Performance comparison between DCM and PDE methods

DCM method PDE method

Computational time 0.5 CPU-second 15 CPU-hours

Speedup of DCM 105

Error from DCM Less than 0.9%
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number of random packings were generated over a

range CN and c, and the resulting effective conductivities

were compared. As porosity is typically used to char-
acterize packed beds, the results were plotted against

porosities, but as shown in Fig. 13, packed beds with

very similar porosity were found to have significantly

different thermal conductivities. This clearly indicate

that porosity is not sufficient to uniquely describe the

packed bed, and further investigations revealed that

packings with different microstructures can give rise to

the same porosity. This is shown in Fig. 14a where the

porosity was found to be a function of CN and rc
(through c ¼ rc=rs), but the effect of the microstructure

was found to be greater at lower porosity and to de-

crease with increasing porosity. This is consistent with

the larger scattering found at a porosity of 0.2 in Fig. 13.

With these findings, the thermal conductivities shown in

Fig. 13 were re-plotted against CN and c, and as shown

in Fig. 14b, the scatter in the data disappeared. Further

effort to correlate the data resulted in the correlation

given below in Eq. (6), which as shown in Fig. 15 at-

tained a correlation coefficient of 0.9.

keff
kc

¼ 0:0125CN2 þ 0:0716CN ð6Þ

Having shown that the thermal conductivity of a packed

bed is a function of the packing structure, we now need

to reconcile this with previous findings that found po-

rosity to be sufficient in characterizing a packed bed. It

turns out that many of the previous studies were per-

formed on sintered packed beds, and in such case the
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Table 2

Performance comparison between DCM and porous medium

methods

DCM method Porous medium

method

Computational

time

8 CPU-minutes 1 CPU-second

Speedup of

porous medium

method

480

Error of porous

medium method

80%
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Fig. 12. Schematic showing the isotropy in the effective thermal

conductivity of a 3-D random packed bed.
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two parameters (CN and c) become non-independent

[18]. In other words, while the porosity of packed bed is,

in general, dependent on two independent, microstruc-

tural parameters (CN and c), certain processes will re-

move the independence of these two parameters, and

thus render a unique relation between the porosity and

the packing microstructure. To verify this, the data in

Fig. 13 were screened according to the microstructural

relation for sintered packed beds [18], and the subse-

quent results in Fig. 16 showed considerable agreement

with results found in the literature [15,16,19,20]. To
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enable easier comparison, the presently computed re-

sults were also presented through a correlation assuming

a third order polynomial dependence, which is given

below in Eq. (7).

keff
k

¼ �0:9/3 þ 2:8/2 � 2:9/þ 1 ð7Þ
4. Conclusion

A DCM method was developed to enable 3-D tran-

sient calculations in random packed beds. To accom-

plish this, correction terms were developed to account

for the relation between the capacitance effect and the

packing structure. The resulting model was validated

and then benchmarked for performance and accuracy.

The results showed the current DCM method to be ac-

curate to within 0.9% of solutions obtained by the PDE

method, but at a speedup of 105. The results also showed

the porosity to be insufficient to uniquely characterize a

packing structure, but the parameters should instead be

CN and c. Correlations were presented relating the ef-

fective thermal conductivity to CN and c.
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